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Abstract

In the present work the turbulent ¯ow past a circular cylinder (Re� 3900) was computed by large eddy simulation (LES). The

objective was not to investigate the physical phenomena of this ¯ow in detail but to study numerical as well as modeling aspects

which in¯uence the quality of LES solutions. Concerning the numerical method the most important component is the discretization

of the non-linear convective ¯uxes. Five di�erent schemes were investigated. Moreover, the in¯uence of di�erent grid resolutions was

examined. On the modeling side two aspects play an important role, namely the near-wall model and the subgrid scale (SGS) model.

Owing to the restriction to a low Reynolds number in this study, no-slip boundary conditions were used at solid walls. Hence only

the second aspect was taken into account. Two di�erent subgrid scale models (Smagorinsky and dynamic model) were applied.

Additionally, LES computations without any subgrid scale modeling were carried out in order to prove the performance of the

above mentioned SGS models. Ó 1998 Elsevier Science Inc. All rights reserved.
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1. Introduction

Turbulent ¯ows past blu� bodies are in general very com-
plicated, including complex phenomena such as separation,
reattachment or vortex shedding. An appropriate description
by Reynolds-averaged Navier±Stokes equations combined
with statistical turbulence models is di�cult to achieve. In
contrast to statistical turbulence models, direct numerical
simulations (DNS) require no extra assumptions but will not
be applicable to engineering ¯ows in the near future. The
concept of large eddy simulation (LES) o�ers a suitable way of
solving such ¯ow problems. In LES the large eddies depending
strongly on the special ¯ow con®guration and its boundary
conditions are resolved numerically whereas only the ®ne-scale
turbulence has to be modeled by a subgrid scale model.

However, before LES can be used for applications of
practical relevance we have to learn more about all in¯uences
on the quality of LES solutions. This includes numerical as-
pects such as discretization schemes or resolution requirements
and modeling aspects such as subgrid scale models or near-wall
models. Owing to extremely long computation times, detailed
studies on this important topic are rare. There have been a few
attempts to distribute the load among di�erent groups by or-
ganizing workshops on LES for speci®ed test cases. One of
these was the ``Workshop on LES of Flows Past Blu� Bodies''
at Tegernsee, June 1995. The results have been published by
Rodi et al. (1997). However, despite the large number of
contributions it was quite di�cult to draw any concrete con-

clusions. Di�erent groups applied di�erent numerical methods
on grids with varying resolutions using di�erent subgrid scale
models and wall boundary conditions. Much of what was
learned in terms of how the various factors a�ect the results
was derived from those cases in which a single group made
multiple simulations that di�ered in just one factor.

The objective of the work reported here was to continue
such e�orts in order to learn more about LES and the im-
portant factors a�ecting the quality of the solution. In contrast
to the test cases of the LES workshop at Tegernsee (¯ow past a
square cylinder and ¯ow past a cubical obstacle), which could
be tackled by Cartesian grids, a geometrically and physically
more complex ¯ow problem is considered, namely the ¯ow
past a long, circular cylinder. In contrast to its square coun-
terpart this con®guration requires curvilinear body-®tted grids
and the separation point on the surface is not ®xed by the
geometry.

2. Numerical simulation process and accuracy

In Fig. 1 the whole procedure of a numerical simulation is
illustrated schematically. The starting point of any simulation
is the physical system which should be described. In the con-
text of LES this is, of course, represented by a turbulent ¯ow.
First, a mathematical model for the behavior of the physical
system has to be de®ned. This step yields the ®rst of three kinds
of systematic errors involved in the simulation procedure. The
modeling error describes the di�erence between the behavior of
the physical system and the exact solution of the mathematical
model. Besides the governing equations, the ®lter formulation,
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the model for the subgrid scale stresses and the approxima-
tions of the boundary conditions determine the size of this type
of error in an LES. After selecting a mathematical model, the
basic equations have to be discretized because generally no
analytical solutions exist for complex physical systems. This
introduces the second kind of error, called discretization error,
de®ned as the di�erence between the exact solution of the
mathematical model and the exact solution of the discretized
equations. In computational ¯uid dynamics (CFD), the size of
this error can be reduced by an appropriate discretization
method and a su�ciently ®ne resolution. Finally, the third type
of error, called convergence error, arises out of the di�erence
between the iterative and the exact solution of the discretized
equations. It depends on the solver applied and the conver-
gence criteria chosen.

These di�erent types of errors should be clearly distin-
guished even though they are in general totally mixed up in the
discrete solution of the physical problem. Nevertheless, one
should be aware of these errors strongly in¯uencing the quality
of any CFD simulation, not only of LES. In this work we had
to restrict the investigations to four aspects, namely the gov-
erning equations (2-D versus 3-D), the subgrid scale model, the
discretization scheme and the resolution.

3. Description of the LES method

3.1. Finite volume method

For LES the three-dimensional, time-dependent Navier±
Stokes equations are ®ltered in order to separate the large scale
and the small scale motions. In this study an incompressible
¯uid is assumed. A box ®lter is applied as ®lter kernel. The
governing equations can be found in Breuer and Rodi (1994).
The code (LESOCC�Large Eddy Simulation On Curvilinear
Coordinates) used to solve the ®ltered equations is based on a
3-D ®nite volume method for arbitrary non-orthogonal, body-
®tted grids (Breuer and Rodi, 1994, 1996; Breuer et al.,
1996a; Breuer et al., 1996b). The surface integrals (F) are

approximated by the mid-point rule, which is equivalent to the
product of the integrand (f) at the cell face center and the cell
face area (S):
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This approximation is of second-order accuracy in space if
the value of f is known at the location i� 1

2
. For a cell-centered

(non-staggered) grid arrangement as used in LESOCC, the
values of f at the cell faces are not available and have to be
obtained by interpolation. In order to examine the in¯uence of
the interpolation scheme especially for the non-linear convec-
tive ¯uxes, ®ve di�erent options have been investigated. For
simpli®cation these schemes are described here under the as-
sumption of an uniform Cartesian grid and a positive ¯ow
direction. Then the approximation for the value at the east cell
face is as given in Table 1.

The Hybrid scheme is a combination of two di�erent ap-
proximations. It toggles between the upwind di�erencing
scheme (UDS) and the central di�erencing scheme (CDS-2)
depending on the local value of the Peclet number Pe. For LES
the Peclet number is in general larger than 2. Therefore, the
leading truncation error term s of this scheme is proportional
to the grid spacing Dx. The Hybrid scheme satis®es the
boundedness criterion unconditionally. However, it is known
to be numerically quite di�usive and therefore not well suited
for LES. Nevertheless, it is added here for completeness.

The CDS-2 scheme linearly interpolates the value at the cell
face which leads to a truncation error term proportional to the
square of the grid spacing Dx2. This error term is dispersive
and can manifest itself as 2 Dx waves in the solution. In the
instantaneous turbulent ¯ow ®eld of LES computations it is
extremely di�cult to detect such 2 Dx waves. However, in most
cases these wiggles also occur in the time-averaged ¯ow ®eld.
The occurrence of 2 Dx waves is an indication of lack of suf-
®cient resolution (see, e.g., Rodi et al., 1997). In general, the
probability of wiggles in the solution increases with increasing
Reynolds number. For the square cylinder test case at

Fig. 1. Numerical and modeling aspects in LES, di�erent kinds of errors involved.
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Re� 22,000 Breuer and PourquieÂ (1996) found 2 Dx waves in
front of the cylinder. These originated at the corners of the
cylinder and decreased in magnitude when the grid was re®ned
indicating resolution problems in this ¯ow region. For the ¯ow
past a circular cylinder at Re� 3900 considered here, no such
di�culties were encountered in a large portion of the inte-
gration domain. Only in the far ®eld of the cylinder minor
wiggles in the solution can be observed (see results below)
which, however, are not critical. In general, the CDS-2 scheme
has often been used for LES computations.

The HLPA scheme (hybrid linear/parabolic approximation)
was proposed by Zhu (1991) and combines a second-order
accurate upstream-weighted approximation with ®rst-order
accurate upwind di�erencing under the control of a convection
boundedness criterion. Zhu claims that HLPA is capable of
yielding low di�usive and always bounded solutions. Espe-
cially the ®rst property makes it worth investigating this
scheme in the context of LES.

The Quick scheme originally proposed by Leonard (1979) is
a logical improvement of the CDS-2 scheme. Instead of a
straight line between the nodes i and i + 1 a parabola is used to
approximate the function f. To construct this polynomial three
instead of two nodes have to be taken into account. The third
point is taken from the upstream side which is in accordance
with the nature of convection. By performing Taylor series
expansions it can be shown that this quadratic interpolation
has a third-order leading truncation error term. However, it is
important to mention that the Quick scheme is still of second-
order accuracy if it is used in conjunction with the midpoint
rule approximation of the surface integral.

Although this restriction holds true for other higher order
interpolations, the CDS-4 scheme was implemented which is
the natural extention of CDS-2 and Quick. It ®ts a third-order
polynomial through four nodes. Two nodes are taken from the
upstream side and two nodes from the downstream side.
Similarly to CDS-2, the CDS-4 scheme is a symmetric inter-
polation which does not depend on the ¯ow direction like the
Hybrid or the Quick scheme. Again, in combination with the
mid-point rule this scheme has formally the same order of
accuracy as CDS-2, Quick and in most cases HLPA. However,
in spite of this fact large di�erences will be observed in the
quality of LES results if these di�erent schemes are used for
LES computations. This will demonstrate that the numerical

dissipation produced by the scheme for the convective ¯uxes is
of much greater relevance for LES than its formal order of
accuracy in space itself. This topic will be discussed below.
Finally it should be mentioned that all viscous ¯uxes are ap-
proximated by central di�erences of second-order accuracy,
which ®ts the elliptic nature of the viscous e�ects.

Time advancement is performed by a predictor±corrector
scheme. A low-storage multi-stage Runge±Kutta method
(three substeps, second-order accurate in time) is applied for
integrating the momentum equations in the predictor step.
Within the corrector step the Poisson equation for the pressure
correction (SIMPLE method) is solved implicitly by an in-
complete LU decomposition method which is accelerated by a
FAS multigrid technique. Explicit time marching works well
for LES with small time steps which are necessary to resolve
turbulence motion in time. Owing to the higher stability limit
of the Runge±Kutta scheme, much larger time steps
(CFL�O(1)) can be used than with the previously applied
Adams-Bashforth scheme. This leads to a reduction in com-
puting time by a factor of about 2.

3.2. Subgrid scale models

The ®ltering procedure provides the governing equations
for the resolvable scales of the ¯ow ®eld. They include an
additional term for the non-resolvable subgrid scale stresses
which describe the in¯uence of the small-scale structures on the
larger eddies. For modeling these non-resolvable subgrid scales
two di�erent models are applied, namely the well known
Smagorinsky model (Smagorinsky, 1963) with Van Driest
damping �l � Cs D�1ÿ exp�ÿy�=25�3�0:5� near solid walls as
well as the dynamic model originally proposed by Germano et
al. (1991). All computations based on the Smagorinsky model
have been done with a Smagorinsky constant of Cs� 0.1.
Following a suggestion by Lilly (1992) a least-squares ap-
proach is used to determine values for C2

s . Depending on the
¯ow problem, di�erent kinds of averaging procedures can be
applied in the dynamic approach. For homogeneous ¯ows
averaging can be performed in the corresponding direction.
For fully inhomogeneous ¯ows only an averaging procedure in
time is applicable. Here a recursive low-pass digital ®lter is
chosen (Breuer and Rodi, 1994). In case of the ¯ow past a
circular cylinder, it is necessary to average in the homogeneous
direction as well as in time (®lter parameter e� 10ÿ3) in order
to obtain a stable solution. Additionally, negative eddy vis-
cosities are clipped. Moreover, LES computations were per-
formed without any subgrid scale model in order to investigate
the in¯uence of the model on the resolved scales. On purpose,
these simulations were not called direct numerical simulations
because they did not comply with the requirements of DNS. In
the author's opinion a simulation should only be denoted as
DNS if the spatial and temporal resolution is ®ne enough to
resolve the smallest scales in a turbulent ¯ow, namely the
Kolmogorov length and time scale. Regarding to the grids
used in the present study (see Table 2), this condition was
never ful®lled leading to the notation of ``LES without subgrid
scale model''.

4. Details of the test case

The ¯ow past a long, circular cylinder is an appropriate test
case for the intended investigations. First a low (subcritical)
Reynolds number of 3900 (based on cylinder diameter D and
free-stream velocity u1) is chosen. It is known from experi-
ments that for this Reynolds number transition takes place in
the free shear layers. The ¯ow problem has already been sim-
ulated and analyzed by Beaudan and Moin (1994). For this low

Table 1

Overview of all interpolation schemes

Scheme Value at cell face: fi�1
2
� s

Hybrid 1
2

fi � fi�1� � Pei�1
2
6 2

fi otherwise

(
Dx2

Dx

CDS-2 1

2
�fi � fi�1� Dx2

HLPA fi � c�fi�1 ÿ fi� fi ÿ fiÿ1

fi�1 ÿ fiÿ1

� �

c � 1 0 < fiÿfiÿ1

fi�1ÿfiÿ1
< 1

0 otherwise

(
Dx2

Dx

Quick 3

8
fi�1 � 3

4
fi ÿ 1

8
fiÿ1

Dx3

CDS-4 ÿ 1

16
fi�2 � 9

16
fi�1 � 9

16
fi ÿ 1

16
fiÿ1

Dx4
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Reynolds number simulation no-slip boundary conditions are
used at solid walls, whereas for high Reynolds number com-
putations two di�erent wall function approaches are available
in LESOCC (Breuer and Rodi, 1994, 1996). In the spanwise
direction of the cylinder periodicity of the ¯ow is assumed. At
the in¯ow plane constant velocity is imposed (no perturbations
added). A convective boundary condition given by

oui

ot
� u1

oui

ox
� 0

is used at the out¯ow boundary. This condition ensures that
vortices can approach and pass the out¯ow boundary without
signi®cant disturbances or re¯ections into the inner domain. In
all previous LES computations of di�erent test cases (Breuer
and Rodi, 1994, 1996; Breuer and PourquieÂ, 1996) the con-
vective boundary condition was found to work very well.
Likewise, no di�culties were observed in the present case of
the circular cylinder ¯ow.

Various curvilinear, O-type grids were generated for this
investigation. Table 2 gives an overview of these di�erent
grids, the corresponding number of control volumes and the
size of the domain. All grids except one consist of 165 ´ 165
control volumes in the cross-sectional plane. Primarily two
grids were used in this study which only di�er in the number of
control volumes in the spanwise direction (32 for B/C and 64
for D). The size of the integration domain for these grids is
30D in the cross-section and pD in the direction of the cylinder
axis. Additionally, three other version are used. The ®rst (Run
A) is for a 2-D computation with only one control volume in
the spanwise direction. The second (Run E1) is for a test with a
larger domain in the spanwise direction, whereas the third
(Run E2) covers a four times larger domain in the cross-sec-
tional plane. The internal region of this grid (radius6 15D) is
exactly the same as for the other grids. The additional points in
the radial direction are added to extend the grid to its new
outer size. In all cases the grid points are clustered in the
vicinity of the cylinder (geometrical series with a stretching
factor of 1.03) and in the wake region.

Statistics were in general compiled over periods of at least
100D=u1 time units or approximately 22 vortex shedding
cycles. In most cases even longer periods of more than

200D=u1 time units were computed to prove convergence of
the statistics. Of course, additional averaging was performed in
the spanwise direction.

5. Results and discussion

5.1. Three-dimensional e�ects

In order to show the necessity for three-dimensional com-
putations for LES, a 2-D simulation was carried out in addi-
tion to 3-D simulations. For the 2-D case the same code and
the same cross-sectional grid with only one control volume in
the spanwise direction were used. Table 2 gives an overview of
all simulations. For investigations on the impact of three-di-
mensionality, simulation A has to be compared with Run C1.
Both simulations were carried out with the CDS-2 scheme and
no subgrid scale model. Fig. 5 shows the streamlines of the
time-averaged ¯ow ®elds. Totally di�erent streamline patterns
can be observed for the 2-D (A) and the 3-D simulations (C1).
The largest di�erence is given by the absence of an attached
recirculation region behind the cylinder in the 2-D case.

In spite of nearly the same averaging time for the 2-D and
3-D simulations, the 2-D ¯ow ®eld is more asymmetric than
the 3-D ¯ow ®eld. Even increasing the averaging time does not
improve the 2-D results signi®cantly. The reason for this
strange behavior can only be detected by observations of the
instantaneous ¯ow structure past the cylinder. In contrast to
the 3-D LES, asymmetric vortex shedding with a non-zero
mean lift coe�cient is observed in the 2-D case. This phe-
nomenon is shown in Fig. 2 by a plot of the instantaneous
pressure distribution. The vortices which shed from the cylin-
der move downstream along an axis which is inclined with
reference to the symmetry line. Irregularly the axis of the
vortex street changes from positive to negative angles and the
other way round. Similar observations have been reported in
the literature. Owing to this behavior, the asymmetric time-
averaged streamlines can be explained.

Fig. 3 shows the time-averaged streamwise velocity along
the centerline for Run A and Run C1. In contrast with the 3-D

Table 2

Overview of all simulations for the circular cylinder

Run Grid Domain Scheme SGS Mod. Lr/D Cd CPback
H1 H2 H3

A 165 ´ 165 ´ 1 30D ´ pD CDS-2 ) ) 1.625 )2.008 100.7 138.2 ±

B1 165 ´ 165 ´ 32 30D ´ pD Hybrid Smago. 0.397 1.486 )1.665 95.2 126.0 ±

B2 165 ´ 165 ´ 32 30D ´ pD HLPA Smago. 0.630 1.319 )1.432 91.4 115.5 ±

B3 165 ´ 165 ´ 32 30D ´ pD Quick Smago. 1.686 0.969 )0.867 86.7 121.5 150.6

B4 165 ´ 165 ´ 32 30D ´ pD CDS-2 Smago. 1.115 1.099 )1.049 87.9 112.0 147.3

B5 165 ´ 165 ´ 32 30D ´ pD CDS-4 Smago. 1.214 1.071 )1.011 87.6 113.7 150.6

C1 165 ´ 165 ´ 32 30D ´ pD CDS-2 ) 0.994 1.144 )1.115 88.6 111.3 150.6

C2�B4 165 ´ 165 ´ 32 30D ´ pD CDS-2 Smago. 1.115 1.099 )1.049 87.9 112.0 147.3

C3 165 ´ 165 ´ 32 30D ´ pD CDS-2 Dynam. 1.197 1.071 )1.011 87.7 113.4 148.8

D1 165 ´ 165 ´ 64 30D ´ pD CDS-2 ) 0.870 1.156 )1.164 89.3 116.7 ±

D2 165 ´ 165 ´ 64 30D ´ pD CDS-2 Smago. 1.043 1.097 )1.069 88.5 119.0 ±

D3 165 ´ 165 ´ 64 30D ´ pD CDS-2 Dynam. 1.372 1.016 )0.941 87.4 ± ±

E1 165 ´ 165 ´ 64 30D ´ 2pD CDS-2 Smago. 1.114 1.089 )1.036 87.9 113.2 146.2

E2 209 ´ 165 ´ 32 120D ´ pD CDS-2 Smago. 1.106 1.081 )1.023 88.0 112.7 148.9

Experiments (Son and Hanratty, 1969; Norberg, 1987; Cardell, 1993) 1.33 0.98 )0.90 85.0 ± ±

�0.2 �0.05 �0.05 �2.0
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simulation, which predicts a reversed ¯ow region behind the
cylinder in accordance with experimental observations by
Lourenco and Shih (1993) and Ong and Wallace (1996), the 2-
D computation shows no recirculation region at all. Un-
physcially, the streamwise velocity is positive along the whole
centerline. In the 3-D case (C1) the ¯ow ®eld consists of a large
recirculation region behind the cylinder and two additional,
small separation bubbles attached to the downstream face of
the cylinder (see Fig. 5). As a result of this ¯ow structure the
computed drag coe�cient Cd and the back-pressure coe�cient
CPback

are much too high in the 2-D case compared with ex-
perimental measurements (e.g. Norberg, 1987), Re� 3000:
Cd� 0.98 � 0.05 and CPback

�)0.9 � 0.05). The large devia-
tions between the 2-D and 3-D results indicate that three-di-
mensional structures strongly in¯uence the near-wake of the
¯ow. Beaudan and Moin (1994) have already pointed out that
these structures consist of pairs of counter-rotating streamwise

vortices, which cannot be captured by a 2-D calculation. This
is an illustrative proof that 2-D LES (as well as DNS) is useless
owing to the impact of three-dimensionality of the ¯ow even in
case of (nearly) two-dimensional ¯ow problems.

Finally, Fig. 4 shows the turbulent von K�arm�an vortex
street past the cylinder visualized by streaklines. Weightless
particles released at 20 di�erent sources in the central plane in
front of the cylinder were integrated during the ¯ow compu-
tation. Of course, the particles do not remain in the central
plane. After transition has taken place in the free shear layers
of the cylinder they spread in the whole integration domain
forming a complex three-dimensional ¯ow structure in the
wake.

5.2. In¯uence of discretization scheme

The second aspect investigated is the in¯uence of di�erent
approximations for the convective ¯uxes in the ®ltered Navier±
Stokes equations. For this purpose ®ve di�erent simulations
(Runs B1±B5, see Table 2) were carried out which di�ered only
according to this detail. All simulations were based on the grid
with 165 ´ 165 ´ 32 control volumes and the Smagorinsky
model with Cs� 0.1. Fig. 5 shows a ®rst qualitative compari-
son of the time-averaged streamlines. Although it is already
known in the LES community that the discretization scheme
plays a dominant role for the quality of the solution, it is worth
demonstrating this important issue by illustrative applications.
As shown in Fig. 5, the structure and the length of the recir-
culation bubbles behind the cylinder are strongly in¯uenced by
the numerical scheme. In all simulations a recirculation region
behind the cylinder exists. Additionally, two small counter-
rotating vortices attached to the backward side of the cylinder
can be observed. Hence three angles can be determined: the
primary separation angle H1, the reattachment angle H2 and
the secondary separation angle H3. The values are listed in
Table 2 in conjunction with the recirculation length Lr/D, the
drag coe�cient Cd and the back-pressure coe�cient CPback

: The
Strouhal number of the vortex shedding frequency has not
been included in Table 2 because for all simulations the com-
puted values are found to be within the experimental range of
St� 0.215 � 0.005 determined by Cardell (1993). Apparently,
this quantity is not very sensitive to the parameters of the
simulation. Rodi et al. (1997) have already pointed out that
accurate prediction of the Strouhal number is not necessarily
an indication of a quality simulation.

Fig. 3. Mean streamwise velocity along the centerline for Run A (2-D

LES) and Run C1 (3-D LES).

Fig. 2. 2-D LES (Run A): Instantaneous pressure distribution for the ¯ow past a circular cylinder, Re� 3900.
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Fig. 5. Time-averaged streamlines for the ¯ow past a circular cylinder, Re� 3900 (for description see Table 2).

Fig. 4. Streaklines of the ¯ow past a circular cylinder, Re� 3900.

M. Breuer / Int. J. Heat and Fluid Flow 19 (1998) 512±521 517



As known from measurements (e.g. by Son and Hanratty,
1969), separation should take place before the apex of the
cylinder at approximately H1� 85 � 2. In Run B1 (Hybrid
scheme) separation is postponed for about 10°. The recircu-
lation length is only one-third of the experimental value re-
sulting in a much too high back-pressure coe�cient and drag
value. Simulation B2 shows a similar trend. However, the re-
sults are quantitatively slightly better but still not in good
agreement with the measured values. Run B3, based on the
Quick scheme, shows an opposite behavior. Here the com-
puted recirculation length is about 27% larger than the ex-
perimental value and the back-pressure and drag coe�cients
are even smaller than in experiments. This is a totally unex-
pected result. As already mentioned above, the Quick scheme
combined with the mid-point rule is of second-order accuracy.
It generates a dispersive third-order error term and also a
dissipative fourth-order error term that acts like an additional
subgrid scale model. Similarly to the dissipative second-order
error term of the Hybrid and the HLPA schemes, the fourth-
order term is expected to add numerical di�usion to the
problem leading, at least in part, to shorter recirculation zones.
However, the Quick scheme shows the opposite result and
actually no explanation can be o�ered for this behavior. Based
on experiences with much simpler test cases (e.g. plane channel
¯ow and square duct ¯ow, see, Breuer and Rodi, 1994, 1996)
which allow investigations on grids with strongly varying res-
olutions, no signi®cant improvements of the LES results for
the circular cylinder ¯ow are expected for the Quick scheme on
®ner grids.

The best results compared with experiments (e.g. by Ong
and Wallace, 1996) are achieved by the CDS-2 and CDS-4
schemes. The error terms of both schemes do not have any
even component (second- or fourth-order derivatives) which
damp out high frequency components in the solution. The
results of CDS-4 (B5) are in slightly better agreement with
experimental observation than those of CDS-2 (B4). However,
the variations between these two results are much smaller than
among the others.

In Fig. 6 the time-averaged streamwise velocity distribution
along the centerline is plotted in comparison with measure-
ments by Lourenco and Shih (1993) and Ong and Wallace
(1996). This ®gure summarizes the observations based on the
streamline plots. Additionally, the distribution of the total
resolved turbulent kinetic energy k is shown in Fig. 7. The
Hybrid scheme (B1) and the HLPA scheme (B2) generate the
largest maxima of k close to the cylinder in a distance of about
0.5D and 0.75D, respectively. Additional peaks of k can be
observed directly in the vicinity of the wall. The maxima of k
produced by CDS-2 (B4) and CDS-4 (B5) are smaller than for
B1 and B2 and their locations further downstream. The lowest
maximum is achieved by the Quick scheme (B3). In all simu-
lations the position of the maxima coincides fairly well with the
recirculation length Lr/D.

However, the high levels of k especially for B1 and B2 have
to be explained because they seem to be contradictory to the
high numerical di�usion produced by these approximations. In
the circular cylinder ¯ow we see strong vortex shedding behind
the cylinder accompanied by turbulent ¯uctuations. Owing to
this large-scale vortex shedding the resolved turbulent kinetic
energy k is a sum of the quasi-periodic oscillations and the
resolved turbulent ¯uctuations. In order to separate these two
e�ects it would be necessary to perform phase-averaging which
is associated with several problems as described by Breuer and
PourquieÂ (1996).

However, looking at instantaneous ¯ow ®elds of B1±B5
(not shown here) the apparent contradiction turns out ®ne. In
case of B1 and B2 the simulated ¯ow looks like laminar vortex
shedding, showing almost no turbulent ¯uctuations as

expected for LES of a turbulent ¯ow. This means that the high
levels of k for these simulations are almost completely gener-
ated by the quasi-periodic vortex shedding and not by turbu-
lent ¯uctuations. This observation is consistent with the high
level of numerical di�usion typical for upwind schemes (B1 and
B2). Simulations B4 and B5 generate instantaneous ¯ow ®elds
as expected for the ¯ow past a cylinder at a subcritical Rey-
nolds number. The vortex shedding motion is superimposed by
strong turbulent ¯uctuations. Again, the result of Run B3 is
di�cult to explain. Turbulent motions can be observed.
However, exact splitting of quasi-periodic and turbulent
components cannot be achieved without phase-averaging.

Fig. 6. Mean streamwise velocity along the centerline using di�erent

discretization schemes (Runs B1±B5).

Fig. 7. Total resolved turbulent kinetic energy k along the centerline

using di�erent discretization schemes (Runs B1±B5).
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5.3. In¯uence of subgrid scale modeling

In comparison with these large variations of the results
applying di�erent numerical schemes, Fig. 5 indicates a small
in¯uence of subgrid scale modeling (Runs C1±C3). This is a
series of three simulations in which only the model for the non-
resolvable subgrid scale stresses was varied. In Table 2 the
computed integral quantities are listed. Simulation C1 without
any subgrid scale model shows the shortest recirculation length
and the highest back-pressure and drag coe�cient of all C
cases. Applying the Smagorinsky model (C2) results in slightly
improved values. The recirculation length increases and ac-
cordingly the drag decreases. This trend continues if the dy-
namic model (C3) is applied instead of the Smagorinsky
model. The distribution of the pressure coe�cient Cp and the
friction coe�cient Cf on the surface of the cylinder are plotted
in Figs. 8 and 9 for C1±C3. In the front part of the cylinder
almost no di�erences in the results can be observed. Because
the ¯ow is laminar in this region, subgrid scale modeling does
not have any in¯uence (as expected). However, on the back-
ward side small deviations occur especially for the pressure
distribution. The results obtained with the Smagorinsky (C2)
and dynamic models (C3) are close to each other and show
better agreement with experimental values for a slightly lower
Reynolds number of Re� 3000 (Norberg, 1987) than C1
without any subgrid scale model. The size of the separation
and reattachment regions on the cylinder is similar in all
simulations (see Fig. 9).

In Figs. 10 and 11 the time-averaged streamwise velocity
and the total resolved turbulent kinetic energy k along the
centerline are plotted for Runs C1±C3. As observed before, the
location of the maximum of k corresponds fairly well with the
recirculation length. It appears that k is reduced when the
Smagorinsky model is applied. Surprisingly, k is further re-
duced when the Smagorinsky model is replaced by the dynamic
approach.

5.4. In¯uence of resolution

In order to investigate the in¯uence of the spanwise resolu-
tion, a new series of simulations D1±D3 has been carried out
which di�ers from C1±C3 only by the doubled number of

control volumes. Again, Fig. 5 shows the streamline plots of the
time-averaged ¯ow and Table 2 lists the computed integral
parameters. The largest deviation between a D and a corre-
sponding C result occurs for the simulation applying the dy-
namic model (C3/D3). In Fig. 12 the turbulent kinetic energy k
along the centerline is plotted. Fig. 13 shows the pressure dis-
tribution on the surface of the cylinder. In comparison with the
results of series C in Fig. 11, k increases for all subgrid scale
models and the deviations between the results achieved with
di�erent models do not decrease on improving the spanwise
resolution. For the pressure distribution the deviations are even
emphasized. However, Run D3 shows a fairly good agreement
with the measurements of Norberg (1987) (Re� 3000) as well as
with the integral quantities listed in Table 2.

Fig. 8. Pressure coe�cient Cp on the surface of the cylinder using

di�erent subgrid scale models (Runs C1±C3).

Fig. 9. Friction coe�cient Cf on the surface of the cylinder using

di�erent subgrid scale models (Runs C1±C3).

Fig. 10. Mean streamwise velocity along the centerline using di�erent

subgrid scale models (Runs C1±C3).
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Figs. 14 and 15 show total resolved Reynolds stress pro®les
in the near wake (x/D� 1.54) obtained from D1±D3. For all
simulations the streamwise Reynolds stress u0u0 is fairly well
predicted in comparison with measurements by Lourenco and
Shih (1993). The dynamic model (D3) yields slightly better
results. However, the cross-stream Reynolds stress v0v0 is highly
overpredicted in the simulation without any subgrid scale
model (D1) and with the Smagorinsky model (D2). This result
is totally contradictory to the observations by Beaudan and
Moin (1994), who found underpredicted values of this quan-
tity. Again, the dynamic model (D3) shows an excellent
agreement with the measurements according to the simulations
by Beaudan and Moin (1994). The di�erences between the
present results and those by Beaudan and Moin (1994) are

expected to be almost entirely due to numerical e�ects. On the
one hand a di�erent grid point distribution and grid stretching
may be responsible for these deviations. On the other hand,
however, the impact of the numerical dissipation produced by
the higher-order upwind-biased schemes (®fth- and seventh-
order) applied in the simulations by Beaudan and Moin (1994)
should de®nitely play a more dominant role as it was already
demonstrated for other upwind schemes above.

Finally, two more aspects were investigated. First the do-
main of integration is doubled in the spanwise direction (Run
E1) by doubling the number of grid points compared with C2
while keeping the spanwise cell size constant. According to the
computed integral parameters, this modi®cation does not im-
prove the results signi®cantly. Another test (Run E2) increases

Fig. 11. Total resolved turbulent kinetic energy k along the centerline

using di�erent subgrid scale models (Runs C1±C3).

Fig. 12. Total resolved turbulent kinetic energy k along the centerline

for Runs D1±D3.

Fig. 13. Pressure coe�cient Cp on the surface of the cylinder for Runs

D1±D3.

Fig. 14. Total resolved Reynolds stress u0u0 at x/D� 1.54 for Runs D1±

D3.
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the domain of integration four times in the radial direction
while keeping the internal grid unchanged (as described
above). Also this modi®cation is rather irrelevant to the
computed results, indicating that the previously used domain
size is fully su�cient.

6. Conclusions

The ¯ow past a circular cylinder at a subcritical Reynolds
number of Re� 3900 was simulated by the method of LES.
The objective of the present work was not to study the physics
of this ¯ow in detail but to carry out an extensive investigation
on numerical and modeling aspects in¯uencing the quality of
LES solutions. The strong impact of three-dimensionality for
LES calculations as well as the important aspect of low-dif-
fusive discretization schemes for the convective ¯uxes were
presented and discussed. The investigation con®rmed the
statement that the numerical dissipation produced by a scheme
is more crucial for LES than its formal order of accuracy.
Furthermore, the in¯uence of subgrid scale modeling and
spanwise resolution was studied in detail. Drawing conclusions
from the investigations above, the dynamic model (D3) yields
the best solution which agrees fairly well with experimental
measurements. Finally, the important role of the spanwise
resolution, which has often been underestimated for LES (and
DNS) of ¯ow problems with a homogeneous direction, must
be emphasized.
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